64 research outputs found

    Moment bounds for the Smoluchowski equation and their consequences

    Full text link
    We prove uniform bounds on moments X_a = \sum_{m}{m^a f_m(x,t)} of the Smoluchowski coagulation equations with diffusion, valid in any dimension. If the collision propensities \alpha(n,m) of mass n and mass m particles grow more slowly than (n+m)(d(n) + d(m)), and the diffusion rate d(\cdot) is non-increasing and satisfies m^{-b_1} \leq d(m) \leq m^{-b_2} for some b_1 and b_2 satisfying 0 \leq b_2 < b_1 < \infty, then any weak solution satisfies X_a \in L^{\infty}(\mathbb{R}^d \times [0,T]) \cap L^1(\mathbb{R}^d \times [0,T]) for every a \in \mathbb{N} and T \in (0,\infty), (provided that certain moments of the initial data are finite). As a consequence, we infer that these conditions are sufficient to ensure uniqueness of a weak solution and its conservation of mass.Comment: 30 page

    A Sublinear Variance Bound for Solutions of a Random Hamilton Jacobi Equation

    Full text link
    We estimate the variance of the value function for a random optimal control problem. The value function is the solution wϵw^\epsilon of a Hamilton-Jacobi equation with random Hamiltonian H(p,x,ω)=K(p)V(x/ϵ,ω)H(p,x,\omega) = K(p) - V(x/\epsilon,\omega) in dimension d2d \geq 2. It is known that homogenization occurs as ϵ0\epsilon \to 0, but little is known about the statistical fluctuations of wϵw^\epsilon. Our main result shows that the variance of the solution wϵw^\epsilon is bounded by O(ϵ/logϵ)O(\epsilon/|\log \epsilon|). The proof relies on a modified Poincar\'e inequality of Talagrand

    Symmetry breaking and phase coexistence in a driven diffusive two-channel system

    Get PDF
    We consider classical hard-core particles moving on two parallel chains in the same direction. An interaction between the channels is included via the hopping rates. For a ring, the stationary state has a product form. For the case of coupling to two reservoirs, it is investigated analytically and numerically. In addition to the known one-channel phases, two new regions are found, in particular the one, where the total density is fixed, but the filling of the individual chains changes back and forth, with a preference for strongly different densities. The corresponding probability distribution is determined and shown to have an universal form. The phase diagram and general aspects of the problem are discussed.Comment: 12 pages, 10 figures, to appear in Phys.Rev.

    On the asymmetric zero-range in the rarefaction fan

    Get PDF
    We consider the one-dimensional asymmetric zero-range process starting from a step decreasing profile. In the hydrodynamic limit this initial condition leads to the rarefaction fan of the associated hydrodynamic equation. Under this initial condition and for totally asymmetric jumps, we show that the weighted sum of joint probabilities for second class particles sharing the same site is convergent and we compute its limit. For partially asymmetric jumps we derive the Law of Large Numbers for the position of a second class particle under the initial configuration in which all the positive sites are empty, all the negative sites are occupied with infinitely many first class particles and with a single second class particle at the origin. Moreover, we prove that among the infinite characteristics emanating from the position of the second class particle, this particle chooses randomly one of them. The randomness is given in terms of the weak solution of the hydrodynamic equation through some sort of renormalization function. By coupling the zero-range with the exclusion process we derive some limiting laws for more general initial conditions.Comment: 22 pages, to appear in Journal of Statistical Physic

    Integrability and Ergodicity of Classical Billiards in a Magnetic Field

    Full text link
    We consider classical billiards in plane, connected, but not necessarily bounded domains. The charged billiard ball is immersed in a homogeneous, stationary magnetic field perpendicular to the plane. The part of dynamics which is not trivially integrable can be described by a "bouncing map". We compute a general expression for the Jacobian matrix of this map, which allows to determine stability and bifurcation values of specific periodic orbits. In some cases, the bouncing map is a twist map and admits a generating function which is useful to do perturbative calculations and to classify periodic orbits. We prove that billiards in convex domains with sufficiently smooth boundaries possess invariant tori corresponding to skipping trajectories. Moreover, in strong field we construct adiabatic invariants over exponentially large times. On the other hand, we present evidence that the billiard in a square is ergodic for some large enough values of the magnetic field. A numerical study reveals that the scattering on two circles is essentially chaotic.Comment: Explanations added in Section 5, Section 6 enlarged, small errors corrected; Large figures have been bitmapped; 40 pages LaTeX, 15 figures, uuencoded tar.gz. file. To appear in J. Stat. Phys. 8

    Homogenization of weakly coupled systems of Hamilton--Jacobi equations with fast switching rates

    Full text link
    We consider homogenization for weakly coupled systems of Hamilton--Jacobi equations with fast switching rates. The fast switching rate terms force the solutions converge to the same limit, which is a solution of the effective equation. We discover the appearance of the initial layers, which appear naturally when we consider the systems with different initial data and analyze them rigorously. In particular, we obtain matched asymptotic solutions of the systems and rate of convergence. We also investigate properties of the effective Hamiltonian of weakly coupled systems and show some examples which do not appear in the context of single equations.Comment: final version, to appear in Arch. Ration. Mech. Ana

    Exclusion and zero-range in the rarefaction fan

    Get PDF
    In these notes we briefly review asymptotic results for the totally asymmetric simple exclusion process and the totally asymmetric constant-rate zero-range process, in the presence of particles with different priorities. We review the Law of Large Numbers for a second class particle added to those systems and we present the proof of crossing probabilities for a second and a third class particles. This is done, for the exclusion process, by means of a particle-hole symmetry argument, while for the zero-range process it is a consequence of a coupling argument.FC

    Equilibrium fluctuations for the totally asymmetric zero-range process

    Get PDF
    We consider the one-dimensional Totally Asymmetric Zero-Range process evolving on Z\mathbb{Z} and starting from the Geometric product measure μρ\mu_\rho. On the hyperbolic time scale the temporal evolution of the density fluctuation field is deterministic, in the sense that the limit field at time tt is a translation of the initial one. We consider the system in a reference frame moving at this velocity and we show that the limit density fluctuation field does not evolve in time until N4/3N^{4/3}, which implies the current across a characteristic to vanish on this longer time scale.The author wants to express her gratitude to "Fundacao para a Ciencia e Tecnologia" for the grant /SFRH/BPD/39991/2007, to CMAT from University of Minho for support and to "Fundacao Calouste Gulbenkian" for the Prize: "Estimulo a investigacao" of the research project "Hydrodynamic limit of particle systems"

    Nonequilibrium Statistical Mechanics of the Zero-Range Process and Related Models

    Full text link
    We review recent progress on the zero-range process, a model of interacting particles which hop between the sites of a lattice with rates that depend on the occupancy of the departure site. We discuss several applications which have stimulated interest in the model such as shaken granular gases and network dynamics, also we discuss how the model may be used as a coarse-grained description of driven phase-separating systems. A useful property of the zero-range process is that the steady state has a factorised form. We show how this form enables one to analyse in detail condensation transitions, wherein a finite fraction of particles accumulate at a single site. We review condensation transitions in homogeneous and heterogeneous systems and also summarise recent progress in understanding the dynamics of condensation. We then turn to several generalisations which also, under certain specified conditions, share the property of a factorised steady state. These include several species of particles; hop rates which depend on both the departure and the destination sites; continuous masses; parallel discrete-time updating; non-conservation of particles and sites.Comment: 54 pages, 9 figures, review articl

    Hydrodynamics of the zero-range process in the condensation regime

    Full text link
    We argue that the coarse-grained dynamics of the zero-range process in the condensation regime can be described by an extension of the standard hydrodynamic equation obtained from Eulerian scaling even though the system is not locally stationary. Our result is supported by Monte Carlo simulations.Comment: 14 pages, 3 figures. v2: Minor alteration
    corecore